Cooperative and penalized competitive learning with application to kernel-based clustering

نویسندگان

  • Hong Jia
  • Yiu-ming Cheung
  • Jiming Liu
چکیده

Competitive learning approaches with individual penalization or cooperation mechanisms have the attractive ability of automatic cluster number selection in unsupervised data clustering. In this paper, we further study these two mechanisms and propose a novel learning algorithm called Cooperative and Penalized Competitive Learning (CPCL), which implements the cooperation and penalization mechanisms simultaneously in a single competitive learning process. The integration of these two different kinds of competition mechanisms enables the CPCL to locate the cluster centers more quickly and be insensitive to the number of seed points and their initial positions. Additionally, to handle nonlinearly separable clusters, we further introduce the proposed competition mechanism into kernel clustering framework. Correspondingly, a new kernel-based competitive learning algorithm which can conduct nonlinear partition without knowing the true cluster number is presented. The promising experimental results on real data sets demonstrate the superiority of the proposed methods. & 2014 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Cooperative and Penalized Competitive Learning Approach to Gaussian Mixture Clustering

Competitive learning approaches with penalization or cooperation mechanism have been applied to unsupervised data clustering due to their attractive ability of automatic cluster number selection. In this paper, we further investigate the properties of different competitive strategies and propose a novel learning algorithm called Cooperative and Penalized Competitive Learning (CPCL), which imple...

متن کامل

Comparison of dyad training method with cooperative and competitive approach in the learning of Basketball Free Throw

Abstract This study aimed to Comparison of dyad training method with cooperative and competitive approach in the learning of Basketball Free Throw. The study sample included 24 girl’s students aged 13-15 years old who had no experience in free throw. Based on pretest scores, the participants were assigned to either the cooperative dyad training group or the competitive dyad training group. In ...

متن کامل

یادگیری نیمه نظارتی کرنل مرکب با استفاده از تکنیک‌های یادگیری معیار فاصله

Distance metric has a key role in many machine learning and computer vision algorithms so that choosing an appropriate distance metric has a direct effect on the performance of such algorithms. Recently, distance metric learning using labeled data or other available supervisory information has become a very active research area in machine learning applications. Studies in this area have shown t...

متن کامل

Rival Penalized Competitive Learning for Model-Based Sequence Clustering

In this paper, we propose a model-based, competitive learning procedure for the clustering of variable-length sequences. Hidden Markov models (HMMs) are used as representations for the cluster centers, and rival penalized competitive learning (RPCL), originally developed for domains with static, fixed-dimensional features, is extended. State merging operations are also incorporated to favor the...

متن کامل

Composite Kernel Optimization in Semi-Supervised Metric

Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition

دوره 47  شماره 

صفحات  -

تاریخ انتشار 2014